\qquad ID

Midterm 2-70 Points

The exam is closed book and closed notes. You may use calculators. No cell phones. Do not use your own paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature

Problem 1

Many models of labor economics predict hours worked, and many policies depend on the number of hours worked (eg. Affordable Care Act). Suppose we wish to predict hours worked per week, hours, using the following regression:

$$
\log (\text { hours })=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { age }+\beta_{3} \text { exper }+u
$$

Education, experience and age are all measured in years. The results from this regression are below.

a. Please construct a 99% confidence interval for the effect of education on hours worked. Please interpret this confidence interval. (10 Points)
b. Using the 97% confidence level, please test whether the coefficient on age is significantly different from zero. State your null and alternative hypotheses, and briefly interpret your result. Show your work! (10 Points)
c. Suppose that we instead estimate the following:

Is this model preferred to the model in 'a'? If a hypothesis test is warranted, please test this at the 95% level, stating your null and alternative. If not, please provide other evidence for your answer. Show your work! (10 Points)
d. Suppose that we instead estimate the following:

Is this model preferred to the model in 'a'? If a hypothesis test is warranted, please test this at the 95% level, stating your null and alternative. If not, please provide other evidence for your answer. Show your work! (10 Points)
e. Using the model in 'd', suppose I claim that IQ has a significant effect on hours worked. What is the probability that I'm wrong? (10 Points)

Problem 2 (20 points)

Using the same data, but instead using hours worked per week rather than log hours, we estimate the following equation.

a. Please construct and interpret a 90% confidence interval for the constant in this regression. Show your work!! (10 Points)
b. Do the variables of the model tell us anything about hours worked? Test this at the 95% level, stating your null and alternative. Show your work! (10 Points)

		0.5398	0	0.5478		0.5557	0.5596		5		
		0.5793	0.583	0	0	0.5948	0.5987	0.602	0.6064	03	
		0.6179	0.621	0.6255	0.6293	0.6331	0.6368	0.640	0.6443	0.6480	7
		0	0	0	0.6664	0	0.6736	0.6772	6808	4	79
		0.6915	0	0.	0	0.7054	088	0.7123	7157	9	
		0.7257		0	0.7357	0	2	0.7454	6		49
		0.7580							0.7794		
		0.7881				0.7995	0.8023	0.8051	0.8078	0.8106	
		0	0.818	0.8212	0.8238	0	0.8289	0.8315	0.8340	0.8365	
		0.8413	0.8	0.8461	0.84	O	0.8531	0.8554	0.8577		
		0.8	0.8	O	O	0.	.	0.8770	0.8790	0.8810	0.8830
		0	0.8869	0.8888	0	0	0.8944	0.8962	0.8980	7	
		0.	0.	-	0.	0.	0.9115	0.9131	0.9147		
		0	0	0.		0.9251	0.926	0.	0.9292	0.9306	
		0		0.		0.9382	0.9394		8		
		0	0	0.	0.	0.9495	0.		5		
						0.9591	0	0	61		
									0.9693		
								0.9750	6		
							0	0.9803	0.9808	2	
				-		0.9838	析	84	850	4	0.9857
		0						0.9881	0.9884		
2.		0.98	0.989	0					9911		
2.4		0.9	0.9	0							
2.5		0.9	0.	0	0	0.	0.9	0.	0.		
2.		0	0	0	0	0.	0.	0.9961	0.9962	3	
2		0.9965	0.9	0.996	0.9	0.996	0.99	0.99	0.9972	. 9973	
2.8		0.9974	0.9	0.9976	0.9	0.9977	0.9978	0.9	0.9979	0.9980	0.9981
2.9		0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	86
3.0		0.9987	0.998	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0	0. 9990

TABLE G.3b
5\% Critical Values of the F Distribution

Nünerator Degrees of Ereedor.										
	1.	2	3	4	5	6	7	8	9.	10
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Example: The 5% critical value for numerator $d f=4$ and large denominator $d f(\infty)$ is 2.37 .
Source: This table was generated using the Stata ${ }^{\mathscr{D}}$ function invFtail.

